
Chapter 4

Introduction to TMLE

Sherri Rose, Mark J. van der Laan

This is the second chapter in our text to deal with estimation. We started by defining
the research question. This included our data, model for the probability distribution
that generated the data, and the target parameter of the probability distribution of the
data. We then presented the estimation of prediction functions using super learning.
This leads us to the estimation of causal effects using the TMLE. This chapter in-
troduces TMLE, and a deeper understanding of this methodology is provided in
Chap. 5. Note that we use the abbreviation TMLE for targeted maximum likelihood
estimation and the targeted maximum likelihood estimator. Later in this text, we dis-
cuss targeted minimum loss-based estimation, which can also be abbreviated TMLE.

For the sake of demonstration, we have considered the data structure O =

(W, A, Y) ∼ P0. Our statistical model for the probability distribution P0 is nonpara-
metric. The target parameter for this example is EW,0[E0(Y | A = 1,W)− E0(Y | A =
0,W)], which can be interpreted as a causal effect under nontestable assumptions
formalized by an SCM, including the randomization assumption and the positivity
assumption. In Chap. 3, we estimated E0(Y | A,W) using super learning. With super
learning we are able to respect that the statistical model does not allow us to assume
a particular parametric form for the prediction function E0(Y | A,W). We could
have estimated the entire conditional density of the outcome Y , but then we would
be estimating portions of the density we do not need. In particular, this would mean
that our initial estimator, such as a super learner of this conditional density of Y ,
would be targeted toward the complete conditional density, even though it is better
to target it toward the conditional mean of Y . Estimating only the relevant portion
of the density of O in this first step of the TMLE procedure provides us with a
maximally efficient (precise) and unbiased procedure: the practical and asymptotic
performance of the TMLE of ψ0 only cares about how well Q̄0 is estimated.

The super learner fit can be plugged into the target parameter mapping to obtain
a corresponding estimator of the target parameter. In other words, for each subject
in the sample, one would evaluate the difference between the predicted value of Y
under treatment (A = 1) and control (A = 0) and average these differences across all
subjects in the sample.
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However, this super learner maximum likelihood (ML)-based substitution esti-
mator is not targeted toward the parameter of interest. The super learner prediction
function was tailored to optimally fit the overall prediction function E0(Y | A,W),
spreading its errors uniformly to (successfully) optimize average squared prediction
errors, and thereby suffers from a nonoptimal bias–variance tradeoff for the causal
effect of interest. Specifically, this ML-based super learner of the causal effect will
be biased.

Our TMLE procedure improves on the ML-based substitution estimator by re-
ducing bias for the target parameter of interest. The initial super learner fit for
E0(Y | A,W) is the first step in the TMLE procedure. The second stage of the TMLE
procedure is a step targeted toward modifying the initial estimator of E0(Y | A,W)
in order to make it less biased for the target parameter. That is, the second stage of
TMLE is tailored to get the best estimate of our target parameter of interest, with
respect to bias and variance, instead of a best estimate of the overall prediction func-
tion E0(Y | A,W). We cover the entire TMLE procedure in this chapter, assuming
the reader has knowledge based on the material presented in Chap. 3.

We explain the TMLE procedure in multiple ways in these two chapters, with the
goal of reinforcing the method and targeting different levels of understanding (con-
ceptual, applied, theoretical). Thus, the applied researcher may only be interested in
a thorough understanding of the conceptual and applied sections, whereas the more
theoretically inclined mathematician may wish to also read the technical derivations
and Appendix A.

TMLE Methodology Summary

TMLE is a two-step procedure where one first obtains an estimate of the
data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted toward making an opti-
mal bias–variance tradeoff for the parameter of interest Ψ (Q0), instead of the
overall density P0. The procedure is double robust and can incorporate data-
adaptive likelihood-based estimation procedures to estimate Q0 and the treat-
ment mechanism. The double robustness of TMLE has important implications
in both randomized controlled trials and observational studies, with potential
reductions in bias and gains in efficiency.

We use our mortality study example to present an application of TMLE. As a
reminder, in this study we are interested in the effect of LTPA on death. We have
binary Y , death within 5 years of baseline, and binary A indicating whether the
subject meets recommended levels of physical activity. The data structure in this
example is O = (W, A, Y) ∼ P0. While we use this basic data structure and a par-
ticular target parameter to illustrate the procedure, TMLE is a very flexible general
method for estimating any particular target parameter of a true probability distri-
bution that is known to be an element of any particular statistical model. We will
demonstrate its implementation with a variety of specific data structures through-
out this text. In Appendix A, we also present a general TMLE of causal effects of
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multiple time point interventions for complex longitudinal data structures. However,
we find introducing TMLE in the context of a simple data structure is helpful for
many people. Starting with Appendix A is often overwhelming, and that appendix
is geared toward those who desire a comprehensive and rigorous statistical under-
standing or wish to develop TMLE for unique applications encountered in practice,
corresponding with a choice of data structure, statistical model, and target parame-
ter, not previously addressed.

TMLE has many attractive properties that make it preferable to other existing
estimators of a target parameter of the probability distribution of the data. We fully
detail these properties in Chaps. 5 and 6, after introducing them in this chapter,
and compare other estimators to TMLE based on these properties. Of note, TMLE
removes all the asymptotic residual bias of the initial estimator for the target pa-
rameter, if it uses a consistent estimator of the treatment mechanism. If the initial
estimator was already consistent for the target parameter, the slight additional fitting
of the data in the targeted step will potentially remove some finite sample bias, and
certainly preserve this consistency property of the initial estimator.

As a consequence, the TMLE is a so-called double robust estimator. In addition,
if the initial estimator and the estimator of the treatment mechanism are both consis-
tent, then it is also asymptotically efficient according to semiparametric statistical
model efficiency theory. It allows the incorporation of machine learning (i.e., su-
per learning) methods for the estimation of both Q̄0 and g0 so that we do not make
assumptions about the probability distribution P0 we do not believe. In this man-
ner, every effort is made to achieve minimal bias and the asymptotic semiparametric
efficiency bound for the variance.

TMLE is also a substitution estimator. Substitution estimators are plug-in esti-
mators, taking an estimator of the relevant part of the data-generating distribution
and plugging it into the mapping Ψ (). Substitution estimators respect the statistical
model space (i.e., the global constraints of the statistical model) and respect that
the target parameter ψ0 is a number obtained by applying the target parameter map-
ping Ψ to a particular probability distribution in the statistical model. Substitution
estimators are therefore more robust to outliers and sparsity than nonsubstitution
estimators.

4.1 Motivation

Let us step back for a moment and discuss why we are here. We want to estimate
a parameter Ψ (P0) under a semiparametric statistical model that represents actual
knowledge. Thus we don’t want to use a misspecified parametric statistical model
that makes assumptions we know to be false. We also know that an ML-based sub-
stitution estimator is not targeted to the parameter we care about. While we like
this approach as it is flexible, it is still not a targeted approach. TMLE is a targeted
substitution estimator that incorporates super learning to get the best estimate of our
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Fig. 4.1 Illustration of bias for different methods

target parameter; it is tailored to be a minimally biased method while also being
tailored to fully utilize all the information in the data.

We illustrate this in Fig. 4.1. The outermost ring is furthest from the truth, and
that represents the estimate we achieve using a misspecified parametric statistical
model. The middle ring in our target improves on the misspecified parametric sta-
tistical model, but it still does not contain the truth. This ring is our nontargeted
semiparametric statistical model approach (super learning). The innermost circle
contains the true Ψ (P0), and this is what we have the potential to achieve with su-
per learning and TMLE combined. We refer to the combined two-stage approach
as TMLE, even though it is understood that the initial estimator and estimator of
the treatment mechanism should be based on super learning respecting the actual
knowledge about P0.

4.2 TMLE in Action: Mortality Study Example

In Chap. 3, we discussed the implementation of super learning for our simplified
mortality study example. In this section we analyze the actual data, updating the
super learner estimate of Q̄0 with a targeting step. This section serves as an intro-
duction to the implementation of TMLE in a concrete example: the data structure is
O = (W, A, Y) ∼ P0, the nonparametric statistical model is augmented with causal
assumptions, and the targeted parameter is Ψ (P0) = EW,0[E0(Y | A = 1,W) − E0(Y |
A = 0,W)], which represents the causal risk difference under these causal assump-
tions. The mean over the covariate vector W in Ψ (P0) is simply estimated with the
empirical mean, so that our substitution TMLE will be of the type

ψn = Ψ (Qn) =
1
n

n∑
i=1

{Q̄n(1,Wi) − Q̄n(0,Wi)},

where Qn = (Q̄n,QW,n) and QW,n is the empirical distribution for the marginal dis-
tribution of W. The second step in the TMLE will update our initial estimate of Q̄0.
We will use the superscript 0 to denote this initial estimate, in conjunction with the
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Table 4.1 SPPARCS variables

Variable Description

Y Death occurring within 5 years of baseline
A LTPA score ≥ 22.5 METs at baseline‡

W1 Health self-rated as “excellent”
W2 Health self-rated as “fair”
W3 Health self-rated as “poor”
W4 Current smoker
W5 Former smoker
W6 Cardiac event prior to baseline
W7 Chronic health condition at baseline
W8 x ≤ 60 years old
W9 60 < x ≤ 70 years old
W10 80 < x ≤ 90 years old
W11 x > 90 years old
W12 Female

‡ LTPA is calculated from answers to a detailed questionnaire where prior performed vigorous physical activities are
assigned standardized intensity values in metabolic equivalents (METs). The recommended level of energy
expenditure for the elderly is 22.5 METs.

subscript n thus we have Q̄0
n as our initial estimate of Q̄0. Information from the treat-

ment mechanism (or exposure mechanism; we use these terms interchangeably) is
used to update Q̄0

n and target it toward the parameter of interest. In this example, our
treatment mechanism is g0 = P0(A | W). Our updated estimate of Q̄0 is denoted Q̄1

n.
Data. The National Institute of Aging-funded Study of Physical Performance

and Age-Related Changes in Sonomans (SPPARCS) is a population-based, census-
sampled, study of the epidemiology of aging and health. Participants of this longitu-
dinal cohort were recruited if they were aged 54 years and over and were residents
of Sonoma, CA or surrounding areas. Study recruitment of 2092 persons occurred
between May 1993 and December 1994 and follow-up continued for approx. 10
years. The data structure is O = (W, A, Y), where Y = I(T ≤ 5 years), T is time
to the event death, A is a binary categorization of LTPA, and W are potential con-
founders. These variables are further defined in Table 4.1. Of note is the lack of any
right censoring in this cohort. The outcome (death within or at 5 years after baseline
interview) and date of death was recorded for each subject. Our parameter of inter-
est is the causal risk difference, the average treatment effect of LTPA on mortality 5
years after baseline interview. The cohort was reduced to a size of n = 2066, as 26
subjects were missing LTPA values or self-rated health score (1.2% missing data).

4.2.1 Estimator

Estimating Q̄0. In Chap. 3, we generated a super learner prediction function. This
is the first step in our TMLE procedure. Thus, we take as inputs our super learner
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Table 4.2 Collection of algorithms

Algorithm Description

glm Linear model
bayesglm Bayesian linear model
polymars Polynomial spline regression
randomForest Random forest
glmnet,α = 0.25 Elastic net
glmnet,α = 0.50
glmnet,α = 0.75
glmnet,α = 1.00
gam, degree = 2 Generalized additive models
gam, degree = 3
gam, degree = 4
gam, degree = 5
nnet,size = 2 Neural network
nnet, size = 4
gbm, interaction depth=1 Gradient boosting
gbm, interaction depth=2

prediction function, the initial estimate Q̄0
n, and our data matrix. The data matrix

includes columns for each of the covariates W found in Table 4.1, exposure LTPA
(A), and outcome Y indicating death within 5 years of baseline. This is step 1 as de-
scribed in Fig. 4.2. We implemented super learner in the R programming language
(R Development Core Team 2010), using the 16 algorithms listed in Table 4.2, re-
calling that algorithms of the same class with different tuning parameters are con-
sidered individual algorithms. Then we calculated predicted values for each of the
2066 observations in our data set, using their observed value of A, and added this as
an n-dimensional column labeled Q̄0

n(Ai,Wi) in our data matrix. Then we calculated
a predicted value for each observation where we set a = 1, and also a = 0, forming
two additional columns Q̄0

n(1,Wi) and Q̄0
n(0,Wi). Note that for those observations

with an observed value of Ai = 1, the value in column Q̄0
n(Ai,Wi) will be equal to

the value in column Q̄0
n(1,Wi). For those with observed Ai = 0, the value in column

Q̄0
n(Ai,Wi) will be equal to the value in column in Q̄0

n(0,Wi). This is depicted in step
2 of Fig. 4.2. At this stage we could plug our estimates Q̄0

n(1,Wi) and Q̄0
n(0,Wi) for

each subject into our substitution estimator of the risk difference:

ψMLE,n = Ψ (Qn) =
1
n

n∑
i=1

{Q̄0
n(1,Wi) − Q̄0

n(0,Wi)}.

This is the super learner ML-based substitution estimator discussed previously,
plugging in the empirical distribution Q0

W,n for the marginal distribution of W, and
the super learner Q̄0

n for the true regression Q̄0. We know that this estimator is not
targeted towards the parameter of interest, so we continue on to a targeting step.
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Estimating g0. Our targeting step required an estimate of the conditional distribu-
tion of LTPA given covariates W. This estimate of P0(A | W) ≡ g0 is denoted gn and
was obtained using super learning and the same algorithms listed in Table 4.2. We
estimated predicted values using this new super learner prediction function, adding
two more columns to our data matrix: gn(1 | Wi) and gn(0 | Wi). This can be seen in
Fig. 4.2 as step 3.

Determining a parametric working model to fluctuate the initial estimator. The
targeting step used the estimate gn in a clever covariate to define a parametric work-
ing model coding fluctuations of the initial estimator. This clever covariate H∗n(A,W)
is given by

H∗n(A,W) ≡
( I(A = 1)
gn(1 | W)

−
I(A = 0)
gn(0 | W)

)
.

Thus, for each subject with Ai = 1 in the observed data, we calculated the clever
covariate as H∗n(1,Wi) = 1/gn(1 | Wi). Similarly, for each subject with Ai = 0 in
the observed data, we calculated the clever covariate as H∗n(0,Wi) = −1/gn(0 | Wi).
We combined these values to form a single column H∗n(Ai,Wi) in the data matrix.
We also added two columns H∗n(1,Wi) and H∗n(0,Wi). The values for these columns
were generated by setting a = 0 and a = 1. This is step 4 in Fig. 4.2.

Updating Q̄0
n. We then ran a logistic regression of our outcome Y on the clever

covariate using as intercept the offset logitQ̄0
n(A,W) to obtain the estimate εn, where

εn is the resulting coefficient in front of the clever covariate H∗n(A,W). We next
wanted to update the estimate Q̄0

n into a new estimate Q̄1
n of the true regression

function Q̄0:
logit Q̄1

n(A,W) = logit Q̄0
n(A,W) + εnH∗n(A,W).

This parametric working model incorporated information from gn, through H∗n(A,W),
into an updated regression. One can now repeat this updating step by running a lo-
gisitic regression of outcome Y on the clever covariate H∗n(A,W) using as intercept
the offset logit Q̄1

n(A,W) to obtain the next update Q̄2
n. However, it follows that this

time the coefficient in front of the clever covariate will be equal to zero, so that sub-
sequent steps do not result in further updates. Convergence of the TMLE algorithm
was achieved in one step. The TMLE of Q0 was given by Q∗n = (Q̄1

n,Q
0
W,n). With εn,

we were ready to update our prediction function at a = 1 and a = 0 according to the
logistic regression working model. We calculated

logit Q̄1
n(1,W) = logitQ̄0

n(1,W) + εnH∗n(1,W),

for all subjects, and then

logit Q̄1
n(0,W) = logitQ̄0

n(0,W) + εnH∗n(0,W)

for all subjects and added a column for Q̄1
n(1,Wi) and Q̄1

n(0,Wi) to the data matrix.
Updating Q̄0

n is also illustrated in step 5 of Fig. 4.2.
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Fig. 4.2 Flow diagram for TMLE of the risk difference in the mortality study example

Targeted substitution estimator of the target parameter. We are at the last step!
We computed the plug-in targeted maximum likelihood substitution estimator using
the updated estimates Q̄1

n(1,W) and Q̄1
n(0,W) and the empirical distribution of W,

as seen in step 6 of Fig. 4.2. Our formula from the first step becomes

ψT MLE,n = Ψ (Q∗n) =
1
n

n∑
i=1

{Q̄1
n(1,Wi) − Q̄1

n(0,Wi)}.
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This mapping was accomplished by evaluating Q̄1
n(1,Wi) and Q̄1

n(0,Wi) for each
observation i, and plugging these values into the above equation. Our estimate of
the causal risk difference for the mortality study was ψT MLE,n = −0.055.

4.2.2 Inference

Standard errors. We then needed to calculate the influence curve for our estimator
in order to obtain standard errors:

ICn(Oi) =
(

I(Ai = 1)
gn(1 | Wi)

−
I(Ai = 0)
gn(0 | Wi)

)
(Y − Q̄1

n(Ai,Wi))

+ Q̄1
n(1,Wi) − Q̄1

n(0,Wi) − ψT MLE,n,

where I is an indicator function: it equals 1 when the logical statement it evaluates,
e.g., Ai = 1, is true. Note that this influence curve is evaluated for each of the n
observations Oi. The beauty of the influence curve of an estimator is that one can
now proceed with statistical inference as if the estimator minus its estimand equals
the empirical mean of the influence curve. Next, we calculated the sample mean
of these estimated influence curve values: ¯ICn =

1
n
∑n

i=1 ICn(oi), where we use oi

to stress that this mean is calculated with our observed realizations of the random
variable Oi. For the TMLE we have ¯ICn = 0. Using this mean, we calculated the
sample variance of the estimated influence curve values:

S 2(ICn) = 1
n
∑n

i=1

(
ICn(oi) − ¯ICn

)2
.

Lastly, we used our sample variance to estimate the standard error of our estimator:

σn =

√
S 2(ICn)

n
.

This estimate of the standard error in the mortality study was σn = 0.012.

Confidence intervals and p-values. With the standard errors, we can now calculate
confidence intervals and p-values in the same manner you may have learned in other
statistics texts. A 95% Wald-type confidence interval can be constructed as:

ψT MLE,n ± z0.975
σn√

n
,

where zα denotes the α-quantile of the standard normal density N(0, 1). A p-value
for ψT MLE,n can be calculated as:

2
[
1 −Φ

(∣∣∣∣∣∣ψT MLE,n

σn/
√

n

∣∣∣∣∣∣
)]
,
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where Φ denotes the standard normal cumulative distribution function. The p-value
was < 0.001 and the confidence interval was [−0.078,−0.033].

Interpretation

The interpretation of our estimate ψT MLE,n = −0.055, under causal assump-
tions, is that meeting or exceeding recommended levels of LTPA decreases
5-year mortality in an elderly population by 5.5%. This result was significant,
with a p-value of < 0.001 and a confidence interval of [−0.078,−0.033].

4.3 Practical Implications

The double robustness and semiparametric efficiency of the TMLE for estimating a
target parameter of the true probability distribution of the data has important impli-
cations for both the analysis of RCTs and observational studies.

4.3.1 Randomized Controlled Trials

In 2010, a panel of the National Academy of Sciences made a recommendation to
the FDA regarding the use of statistical methods for dealing with missing data in
RCTs. The panel represented the split in the literature, namely, those supporting
maximum-likelihood-based estimation, and specifically the use of multiple imputa-
tion (MI) methods, and the supporters of (augmented) inverse probability of cen-
soring weighted (A-IPCW) estimators based on solving estimating equations. As a
consequence, the committee’s report ended up recommending both methods: a split
decision.

Both camps at the table have been right in their criticism. The MI camp has
been stating that the IPCW methods are too unstable and cannot be trusted in finite
samples as demonstrated in various simulation studies, even though these methods
can be made double robust. The A-IPCW camp has expressed that one cannot use
methods that rely on parametric models that may cause severe bias in the resulting
estimators of the treatment effect.

TMLE provides the solution to this problem of having to choose between two
methods that have complementary properties: TMLE is a maximum-likelihood-
based method and thus inherits all the attractive properties of maximum-likelihood-
based substitution estimators, while it is still double robust and asymptotically effi-
cient. TMLE has all the good properties of both the MI and the A-IPCW estimators,
but it does not have the bad properties such as reliance on misspecified paramet-
ric models of the maximum-likelihood-based estimation the instability of the IPCW
estimators due to not being substitution estimator. The FDA has also repeatedly ex-
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pressed a desire for methods that can be communicated to medical researchers. As
with maximum-likelihood-based estimation, the TMLE is easier to communicate:
it is hard to communicate estimators that are defined as a solution of an estimating
equation instead of a maximizer of a well-defined criterion.

TMLE can also be completely aligned with the highly populated maximum-
likelihood-based estimation camp: TMLE can use maximum-likelihood-based es-
timation as the initial estimator, but it will carry out the additional targeting step. Of
course, we recommend using the super learner (i.e., machine learning) as the initial
estimator, but in an RCT in which one assumes that missingness is noninformative,
the use of the parametric maximum likelihood estimation as initial estimator will
not obstruct unbiased estimation of the causal effect of interest.

Consider an RCT in which we observe on each unit (W, A, Δ, ΔY), where Δ is
an indicator of the clinical outcome being observed. Suppose we wish to esti-
mate the additive causal effect E0Y1 − E0Y0, which is identified by the estimand
E0[Q̄0(0,W) − Q̄0(1,W)], where Q̄0(A,W) = E0(Y | A,W, Δ = 1) under causal as-
sumptions, including that no unmeasured predictors of Y predict the missingness
indicator. The TMLE of this additive causal effect only involves a minor modifica-
tion of the TMLE presented above, and is derived in Appendix A. That is, the clever
covariate is modified by multiplying it by 1/P0(Δ = 1 | A,W), and all outcome
regressions are based on the complete observations only.

In an RCT the treatment assignment process, g0(1 | W) = P0(A = 1 | W), is
known (e.g., 0.5), and it is often assumed that missingness of outcomes is nonin-
formative, also called missing completely at random. When this assumption holds,
the gn, comprising both the treatment assignment and the censoring or missingness
mechanism, is always correctly estimated. Specifically, one can consistently esti-
mate the missingness mechanism P0(Δ = 1 | A,W) with the empirical proportions
for the different treatment groups, thus ignoring the value of W. The TMLE will
provide valid type I error control and confidence intervals for the causal effect of
the investigated treatment, even if the initial regression estimator Q̄0

n is completely
misspecified.

The use of TMLE also often results in efficiency and bias gains with respect
to the unadjusted or other ad hoc estimators commonly employed in the analysis of
RCT data. For example, consider the additive causal effect example discussed in this
chapter. The unadjusted estimator is restricted to considering only complete cases,
ignoring observations where the outcome is missing, and ignoring any covariate in-
formation. In this particular example, the efficiency and bias gain is already apparent
from the fact that the targeted maximum likelihood approach averages an estimate
of an individual effect Q̄0(1,W) − Q̄0(0,W) over all observations in the sample,
including the observations that had a missing outcome.

TMLE can exploit information in measured baseline and time-dependent covari-
ates, even when there is no missingness or right censoring. This allows for bias
reduction due to empirical confounding, i.e., it will adjust for empirical imbalances
in the treatment and control arm, and thereby improve finite sample precision (ef-
ficiency). To get an insight into the potential gains of TMLE relative to the current
standard, we note that the relative efficiency of the TMLE relative to the unadjusted
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estimator of the causal additive risk in a standard RCT with two arms and ran-
domization probability equal to 0.5, and no missingness or censoring, is given by 1
minus the R squared of the regression of the clinical outcome Y on the baseline co-
variates W implied by the targeted maximum likelihood fit of the regression of Y on
the binary treatment and baseline covariates. That is, if the baseline covariates are
predictive, one will gain efficiency, and one can predict the amount of improvement
from the actual regression fit.

Perhaps more importantly, the TMLE naturally adjusts for dropout (missingness)
as well and can also be used to assess the effect of treatment under noncompliance,
i.e., it is unbiased when standard methods are biased. Unlike an unadjusted esti-
mator that ignores covariate information, TMLE does not rely on an assumption
of noninformative missingness or dropout, but allows that missingness and dropout
depend on the observed covariates, including time-dependent covariates.

In RCTs, including sequentially randomized controlled trials, one can still fully
respect the likelihood of the data and obtain fully efficient and unbiased estimators,
without taking the risk of bias due to statistical model misspecification (which has
been the sole reason for the application of inefficient unadjusted estimators). On the
contrary, the better one fits the true functions Q0 and g0, as can be evaluated with
the cross-validated log-likelihood, the more bias reduction and efficiency gain will
have been achieved.

Prespecification of the TMLE in the statistical analysis plan allows for appropri-
ate adjustment with measured confounders while avoiding the possible introduction
of bias should that decision be based on human intervention. Therefore, TMLEs can
be used for both the efficacy as well as the safety analysis in Phase II, III, and IV
clinical trials. In addition, just like for unadjusted estimators, permutation distribu-
tions can be used to obtain finite sample inference and more robust inference.

4.3.2 Observational Studies

At many levels of society one builds large electronic databases that keep track of
large patient populations. One wishes to use these dynamic databases to assess
safety signals of drugs, evaluate the effectiveness of different interventions, and so
on. Comparative effectiveness research concerns the research involved to make such
comparisons. These comparisons often involve observational studies, so that one
cannot assume that the treatment was randomly assigned. In such studies, standard
off-the-shelf methods are biased due to confounding as well as informative missing-
ness, censoring, and possibly biased sampling.

In observational studies, the utilization of efficient and maximally unbiased esti-
mators is thus extremely important. One cannot analyze the effect of high dose of
a drug on heart attack in a postmarket safety analysis using logistic regression in a
parametric statistical model or Cox proportional hazards models, and put much trust
in a p-value. It is already a priori known that these statistical models are misspec-
ified and that the effect estimate will be biased, so under the null hypothesis of no
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treatment effect, the resulting test statistic will reject the null hypothesis incorrectly
with probability tending to 1 as sample size increases. For example, if the high dose
is preferentially assigned to sicker people, then the unadjusted estimator is biased
high, a maximum likelihood estimator according to a misspecified parametric model
will still be biased high by its inability to let the data speak and thereby adjust for
the measured confounders.

As a consequence, the only alternative is to use semiparametric statistical models
that acknowledge what is known and what is not known, and use robust and efficient
substitution estimators. Given such infinite-dimensional semiparametric statistical
models, we need to employ machine learning, and, in fact, as theory suggests, we
should not be married to one particular machine learning algorithm but let the data
speak by using super learning. That is, one cannot foresee what kind of algorithm
should be used, but one should build a rich library of approaches, and use cross-
validation to combine these estimators into an improved estimator that adapts the
choice to the truth. In addition, and again as theory teaches us, we have to target
the fit toward the parameter of interest, to remove bias for the target parameter,
and to improve the statistical inference based on the central limit theorem. TMLE
combined with super learning provides such a robust and semiparametric efficient
substitution estimator, while we maintain the log-likelihood or other appropriate
loss function as the principal criterion.

4.4 Summary

TMLE is a general algorithm where we start with an initial estimator of P0, or a
relevant parameter Q0 of P0. We then create a parametric statistical model with
parameter ε through this given initial estimator whose score at ε = 0 spans the
efficient influence curve of the parameter of interest at the given initial estimator. It
estimates ε with maximum likelihood estimation in this parametric statistical model
and finally updates the new estimator as the corresponding fluctuation of the given
initial estimator. The algorithm can be iterated until convergence, although in many
common cases it converges in one step.

4.5 Road Map for Targeted Learning

We have now completed the road map for targeted learning depicted in Fig. 4.3.
This chapter covered effect estimation using super learner and TMLE, as well as
inference. In many cases, we may be interested in a ranked list of effect measures,
often referred to as variable importance measures (VIMs). We provided an addi-
tional road map (Fig. 4.4) for research questions involving VIMs, which are com-
mon in medicine, genomics, and many other fields. We address questions of variable
importance in Chaps. 22 and 23.
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DATA
The data are n i.i.d. observations of random variable O. O has 

probability distribution P0.

MODEL
The statistical model M is a set of possible probability distributions 
of O. P0 is in M. The model is a statistical model for P0 augmented 

with possible additional nontestable causal assumptions.

TARGET PARAMETER
The parameter Ψ(P0) is a particular feature of P0, where Ψ maps the 

probability distribution P0 into the target parameter of interest.  
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updates this initial fit in a step targeted toward making an optimal 
bias–variance tradeoff for the parameter of interest, now denoted 
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Fig. 4.3 Road map for targeted learning
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DATA
The data are n i.i.d. observations of random variable O. O has 

probability distribution P0.

MODEL
The statistical model M is a set of possible probability distributions 
of O. P0 is in M. The model is a statistical model for P0 augmented 

with possible additional nontestable causal assumptions.  With 
variable importance, we are often not willing to make causal 

assumptions due to violations of the (sequential) randomization 
assumption.

TARGET PARAMETERS
The parameters Ψ(P0) are features of P0, where Ψ maps the 

probability distribution P0 into the target parameters. 
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our estimation procedure for each parameter is an initial estimate of 
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With an initial estimate of the relevant part of the data-generating 

distribution obtained using super learning for each target parameter, 
the second stage of TMLE updates this initial fit in a step targeted 

toward making an optimal bias–variance tradeoff for the parameter 
of interest, now denoted Ψ(Q0), instead of the overall probability 
distribution. We repeat this procedure for all target parameters.
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parameters since causal assumptions often do not hold in common 

variable importance situations.

END

Fig. 4.4 Road map for targeted learning of variable importance measures
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4.6 Notes and Further Reading

MLE has been referred to elsewhere as g-formula and g-computation. It is a
maximum-likelihood-based substitution estimator of the g-formula parameter. The
g-formula for identifying the distribution of counterfactuals from the observed data
distribution, under the sequential randomization assumption, was originally pub-
lished in Robins (1986). We also refer readers to an introductory implementation
of a maximum-likelihood-based substitution estimator of the g-formula (Snowden
et al. 2011; Rose et al. 2011).

Estimating equation methodology, including IPTW (Robins 1999b; Hernan et al.
2000) and A-IPTW (Robins et al. 2000b; Robins 2000; Robins and Rotnitzky 2001),
is discussed in detail in van der Laan and Robins (2003). Detailed references and a
bibliographic history on locally efficient A-IPTW estimators, double robustness, and
estimating equation methodology can be found in Chap. 1 of that text. A key semi-
nal paper in this literature is Robins and Rotnitzky (1992). A-IPTW was previously
referred to as the double robust estimator in some publications. Didactic presenta-
tions of IPTW can be found in Robins et al. (2000a), Mortimer et al. (2005), and
Cole and Hernan (2008).

For the original paper on TMLE we refer readers to van der Laan and Rubin
(2006). Subsequent papers on TMLE in observational and experimental studies in-
clude Bembom and van der Laan (2007a), van der Laan (2008a), Rose and van der
Laan (2008, 2009, 2011), Moore and van der Laan (2009a,b,c), Bembom et al.
(2009), Polley and van der Laan (2009), Rosenblum et al. (2009), van der Laan
and Gruber (2010), Gruber and van der Laan (2010a), Rosenblum and van der Laan
(2010a), and Wang et al. (2010).

A detailed discussion of multiple hypothesis testing and inference for variable
importance measures is presented in Dudoit and van der Laan (2008). We also re-
fer readers to Chaps. 22 and 23. The mortality study analyzed in this chapter with
TMLE is based on data discussed in Tager et al. (1998).

Previous work related to estimators in RCTs (and in general in observational
studies with known probabilities of treatment) that are robust to model misspecifi-
cation include, for example, Robins (1994), Robins et al. (1995), Scharfstein et al.
(1999), van der Laan and Robins (2003), Leon et al. (2003), Tan (2006), Tsiatis
(2006), Moore and van der Laan (2009b), Zhang et al. (2008), Rubin and van der
Laan (2008), Freedman (2008a,b), and Rosenblum and van der Laan (2009a).

We refer readers to Bickel et al. (1997) for a text on semiparametric estimation
and asymptotic theory. Tsiatis (2006) is a text applying semiparametric theory to
missing data, including chapters on Hilbert spaces and influence curves. We also
refer to Hampel et al. (1986) for a text on robust statistics, including presentation of
influence curves. Van der Vaart (1998) provides a thorough introduction to asymp-
totic statistics, and van der Vaart and Wellner (1996) discuss stochastic convergence,
empirical process theory, and weak convergence theory.



Chapter 5

Understanding TMLE

Sherri Rose, Mark J. van der Laan

This chapter focuses on understanding TMLE. We go into more detail than the pre-
vious chapter to demonstrate how this estimator is derived. Recall that TMLE is a
two-step procedure where one first obtains an estimate of the data-generating distri-
bution P0 or the relevant portion Q0 of P0. The second stage updates this initial fit
in a step targeted toward making an optimal bias–variance tradeoff for the param-
eter of interest Ψ (Q0), instead of the overall density P0. The procedure is double
robust and can incorporate data-adaptive-likelihood-based estimation procedures to
estimate Q0 and the treatment mechanism.

5.1 Conceptual Framework

We begin the discussion of TMLE at a conceptual level to give an overall picture of
what the method achieves. In Fig. 5.1 we depict a flow chart for TMLE, and in this
section, we walk the reader through the illustration and provide a conceptual foun-
dation for TMLE. We start with our observed data and some (possibly) real valued
function Ψ (), the target parameter mapping. These two objects are our inputs. We
have an initial estimator of the probability distribution of the data (or something
smaller than that – the relevant portion). This is P0

n and is estimated semiparamet-
rically using super learning. This initial estimator is typically already somewhat
informed about the target parameter of interest by, for example, only focusing on
fitting the relevant part Q0 of P0. P0

n falls within the statistical model, which is the
set of all possible probability distributions of the data. P0, the true probability distri-
bution, also falls within the statistical model, since it is assumed that the statistical
model is selected to represent true knowledge. In many applications the statistical
model is necessarily nonparametric. We update P0

n in a particular way, in a targeted
way by incorporating the target parameter mapping Ψ , and now denote this targeted
update as P∗n. If we map P∗n using our function Ψ (), we get our estimator Ψ (P∗n)
and thereby a value on the real line. The updating step is tailored to result in values
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Fig. 5.1 TMLE flow chart.

Ψ (P∗n) that are closer to the truth than the value generated using the initial estimate
P0

n: specifically, Ψ (P∗n) is less biased than Ψ (P0
n).

TMLE provides a concrete methodology for mapping the initial estimator P0
n into

a targeted estimator P∗n, which is described below in terms of an arbitrary statistical
model M and target parameter mapping Ψ () defined on this statistical model. In
order to make this more accessible to the reader, we then demonstrate this general
template for TMLE with a nonparametric statistical model for a univariate random
variable and a survival probability target parameter. Specifically, TMLE involves
the following steps:

• Consider the target parameter Ψ :M→ R. Compute its pathwise derivative at P
and its corresponding canonical gradient D∗(P), which is also called the efficient
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influence curve. This object D∗(P), a function of O with mean zero under P, is
now available for each possible probability distribution P.

• Define a loss function L() so that P→ E0L(P) is minimized at the true probability
distribution P0. One could select the log-likelihood loss function L(P) = − log P.
However, typically, this loss function is chosen so that it only depends on P
through a relevant part Q(P) and Q → L(Q) is minimized at Q0 = Q(P0). This
loss function could also be used to construct a super-learner-based initial estima-
tor of Q0.

• For a P in our model M, define a parametric working model {P(ε) : ε} with
finite-dimensional parameter ε so that P(ε = 0) = P, and a “score” d

dε L(P(ε)) at
ε = 0 for which a linear combination of the components of this “score” equals the
efficient influence curve D∗(P) at P. Typically, we simply choose the parametric
working model so that this score equals the efficient influence curve D∗(P). If
the loss function L() only depends on P through a relevant part Q = Q(P), then
this translates into a parametric working model {Q(ε) : ε} chosen so that a linear
combination of the components of the “score” d

dε L(Q(ε)) at ε = 0 equals the
efficient influence curve D∗(P) at P.

• Given an initial estimator P0
n of P0, we compute ε0n = arg minε

∑n
i=1 L(P0

n(ε))(Oi).
This yields the first step TMLE P1

n = P0
n(ε0n ). This process is iterated: start with

k = 1, compute εkn = arg minε
∑n

i=1 L(Pk
n(ε))(Oi) and Pk+1

n = Pk
n(εkn), increase k

to k + 1, and repeat these updating steps until εkn = 0. The final update PK
n at the

final step K is denoted by P∗n and is the TMLE of P0. The same algorithm can
be directly applied to Q0

n of Q0 = Q(P0) for the case that the loss function only
depends on P through Q(P).

• The TMLE of ψ0 is now the substitution estimator obtained by plugging P∗n into
the target parameter mapping: ψ∗n = Ψ (P∗n). Similarly, if ψ0 = Ψ (Q0) and the
above loss function L() is a loss function for Q0, then we plug the TMLE Q∗n into
the target parameter mapping: ψ∗n = Ψ (Q∗n).

• The TMLE P∗n solves the efficient influence curve equation 0 =
∑n

i=1 D∗(P∗n)(Oi),
which provides a basis for establishing the asymptotic linearity and efficiency of
the TMLE Ψ (P∗n).

For further presentation of TMLE at this general level we refer the interested reader
to Appendix A.

Demonstration of TMLE template. In this section we demonstrate the TMLE tem-
plate for estimation of survival probability. Suppose we observe n i.i.d. univariate
random variables O1, . . . ,On with probability distribution P0, where Oi represents a
time to failure such as death. Suppose that we have no knowledge about this proba-
bility distribution, so that we select as statistical model the nonparametric modelM.
Let Ψ (P) = P(O > 5) be the target parameter that maps any probability distribution
in its survival probability at 5 years, and let ψ0 = P0(O > 5) be our target parameter
of the true data-generating distribution.

The pathwise derivative Ψ (P(ε)) at ε = 0 for a parametric submodel (i.e., path)
{PS (ε) = (1 + εS (P))P : ε} with univariate parameter ε is given by
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d
dε
Ψ (PS (ε))

∣∣∣∣∣
ε=0
= EP{I(O > 5) − Ψ (P)}S (P)(O).

Note that indeed, for any function S of O that has mean zero under P and is uni-
formly bounded, it follows that PS (ε) is a probability distribution for a small enough
choice of ε, so that the family of paths indexed by such functions S represents a valid
family of submodels through P in the nonparametric model. By definition, it follows
that the canonical gradient of this pathwise derivative at P (relative to this family of
parametric submodels) is given by D∗(P)(O) = I(O > 5) − Ψ (P). The canonical
gradient is also called the efficient influence curve at P.

We could select the log-likelihood loss function L(P) = − log P(O) as loss func-
tion. A parametric working model through P is given by P(ε) = (1 + εD∗(P))P,
where ε is the univariate fluctuation parameter. Note that this parametric submodel
includes P at ε = 0 and has a score at ε = 0 given by D∗(P), as required for the
TMLE algorithm. We are now ready to define the TMLE.

Let P0
n be an initial density estimator of the density P0. Let

ε0n = arg max
ε

n∑
i=1

log P0
n(ε)(Oi),

and let P1
n = P0

n(ε0n ) be the corresponding first-step TMLE of P0. It can be shown that
the next iteration yields ε1n = 0, so that convergence of the iterative TMLE algorithm
occurs in one step (van der Laan and Rubin 2006). The TMLE is thus given by
P∗n = P1

n, and the TMLE of ψ0 is given by the plug-in estimator ψ∗n = Ψ (P∗n) =
P∗n(O > 5). Since P∗n solves the efficient influence curve equation, it follows that
ψ∗n =

1
n
∑n

i=1 I(Oi > 5) is the empirical proportion of subjects that has a survival time
larger than 5. This estimator is asymptotically linear with influence curve D∗(P0)
since ψ∗n − ψ0 =

1
n
∑n

i=1 D∗(P0)(Oi), which proves that the TMLE of ψ0 is efficient
for every choice of initial estimator: apparently, all bias of the initial estimator is
removed by this TMLE update step.

Consider a kernel density estimator with an optimally selected bandwidth (e.g.,
based on likelihood-based cross-validation). Since this optimally selected band-
width trades off bias and variance for the kernel density estimator as an estimate of
the true density P0, it will, under some smoothness conditions, select a bandwidth
that converges to zero in sample size at a rate n−1/5. The bias of such a kernel den-
sity estimator converges to zero at the rate n−2/5. As a consequence, the substitution
estimator of the survival function at t for this kernel density estimator has a bias that
converges to zero at a slower rate than 1/

√
n in the sample size n. We can conclude

that the substitution estimator of a survival function at 5 years based on this optimal
kernel density estimator will have an asymptotic relative efficiency of zero (!) rela-
tive to the empirical survival function at 5 years. This simple example demonstrates
that a regularized maximum likelihood estimator of P0 is not targeted toward the
target parameter of interest and, by the same token, that current Bayesian inference
is not targeted toward the target parameter. However, if we apply the TMLE step
to the kernel density estimator, then the resulting TMLE of the survival function is
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unbiased and asymptotically efficient, and it even remains unbiased and asymptoti-
cally efficient if the kernel density estimator is replaced by an incorrect guess of the
true density.

The point is: the best estimator of a density is not a good enough estimator of
a particular feature of the density, but the TMLE step takes care of this.

5.2 Definition of TMLE in Context of the Mortality Example

This section presents the definition of TMLE in the context of our mortality ex-
ample, thereby allowing the reader to derive the TMLE presented in the previous
chapter. The reader may recognize the general recipe for TMLE as presented in
Sect. 5.1 that can be applied in any semiparametric model with any target parame-
ter. After having read this section, the reader might consider revisiting this general
TMLE presentation. Our causal effect of interest is the causal risk difference, and
the estimand is the corresponding statistical W-adjusted risk difference, which can
be interpreted as the causal risk difference under causal assumptions. The data struc-
ture in the illustrative example is O = (W, A, Y) ∼ P0. TMLE follows the basic steps
enumerated below, which we then illustrate in more detail.

TMLE for the Risk Difference

1. Estimate Q̄0 using super learner to generate our prediction function Q̄0
n.

Let Q0
n = (Q̄0

n,QW,n) be the estimate of Q0 = (Q̄0,QW,0), where QW,n is the
empirical probability distribution of W1, . . . ,Wn.

2. Estimate the treatment mechanism using super learning. The estimate of g0
is gn.

3. Determine a parametric family of fluctuations {Q0
n(ε) : ε} of the initial es-

timator Q0
n with fluctuation parameter ε, and a loss function L(Q) so that

a linear combination of the components of the derivative of L(Q0
n(ε)) at

ε = 0 equals the efficient influence curve D∗(Q0
n, gn) at any initial estimator

Q0
n = (Q̄0

n,Q
0
W,n) and gn. Since the initial estimate Q0

W,n of the marginal dis-
tribution of W is the empirical distribution (i.e., nonparametric maximum
likelihood estimator), the TMLE using a separate ε for fluctuating Q0

W,n
and Q̄0

n will only fluctuate Q̄0
n. The parametric family of fluctuations of Q̄0

n
is defined by parametric regression including a clever covariate chosen so
that the above derivative condition holds with ε playing the role of the co-
efficient in front of the clever covariate. This “clever covariate” H∗n(A,W)
depends on (Q0

n, gn) only through gn, and in the TMLE procedure it needs
to be evaluated for each observation (Ai,Wi), and at (0,Wi), (1,Wi).
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4. Update the initial fit Q̄0
n(A,W) from step 1. This is achieved by hold-

ing Q̄0
n(A,W) fixed (i.e., as intercept) while estimating the coefficient ε

for H∗n(A,W) in the parametric working model using maximum likeli-
hood estimation. Let εn be this parametric maximum likelihood estima-
tor. The updated regression is given by Q̄1

n = Q̄0
n(εn). For the risk differ-

ence, no iteration is necessary, since the next iteration will not result in
any change: that is, the next εn will be equal to zero. The TMLE of Q0 is
now Q∗n = (Q̄1

n,Q
0
W,n), where only the conditional mean estimator Q̄0

n was
updated.

5. Obtain the substitution estimator of the causal risk difference by applica-
tion of the target parameter mapping to Q∗n:

ψn = Ψ (Q∗n) =
1
n

n∑
i=1

{Q̄1
n(1,Wi) − Q̄1

n(0,Wi)}.

6. Calculate standard errors based on the influence curve of the TMLE ψn,
and then calculate p-values and confidence intervals.

There are several concepts in this enumerated step-by-step list that may be some-
what opaque for the reader: the parametric working model coding the fluctuations
of the initial estimator, the corresponding clever covariate, the efficient influence
curve, and the influence curve. We expand upon the list, including these topics, be-
low. For the nontechnical reader, we provide gray boxes so that you can read these
to understand the essential topics relevant to each step. The white boxes outlined in
black contain additional technical information for the more theoretical reader.

5.2.1 Estimating Q̄0

The first step in TMLE is obtaining an estimate Q̄0
n for Q̄0. This initial fit is achieved

using super learning, avoiding assuming a misspecified parametric statistical model.

5.2.2 Estimating g0

The TMLE procedure uses the estimate of Q̄0 obtained above in conjunction with
an estimate of g0. We estimate g0 with gn, again using super learning.
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5.2.3 Determining the Efficient Influence Curve D∗(P)

To obtain such a parametric working model to fluctuate the initial estimator Q0
n

we need to know the efficient influence curve of the target parameter mapping at
a particular P in the statistical model. This is a mathematical exercise that takes
as input the definition of the statistical model M (i.e, the nonparametric model)
and the target parameter mapping from this statistical model to the real line (i.e.,
Ψ :M→ R). We refer to Appendix A for required background material. It follows
that the efficient influence curve at P0 only depends on (Q0, g0) and is given by

D∗(Q0, g0)(W, A, Y) =
(

I(A = 1)
g0(1 | W)

−
I(A = 0)
g0(0 | W)

)
(Y − Q̄0(A,W))

+ Q̄0(1,W) − Q̄0(0,W) − Ψ (Q0).

More on the efficient influence curve. Calculation of the efficient influ-
ence curve, and of components of the efficient influence curve, requires
calculations of projections of an element onto a subspace within a Hilbert
space. These projections are defined in the Hilbert space L2

0(P) of func-
tions of O that have mean zero under P endowed with an inner product
〈S 1, S 2〉P = EPS 1(O)S 2(O), being the covariance of two functions of
O. Two elements in an Hilbert space are orthogonal if the inner product
equals zero: so two functions of O are defined as orthogonal if their cor-
relation or covariance equals zero. Recall that a projection of a function
S onto a subspace of L2

0(P) is defined as follows: (1) the projection is an
element of the subspace and (2) the difference of S minus the projection
is orthogonal to the subspace. The subspaces on which one projects are
so-called tangent spaces and subtangent spaces. The tangent space at P
is defined as the closure of the linear span of all scores of submodels
through P. The tangent space is a subspace of L2

0(P). The tangent space
of a particular variation-independent parameter of P is defined as the
closure of the linear span of all scores of submodels through P that only
vary this particular factor. We can denote the tangent spaces by T (P) and
a projection of a function S onto a T (P) by Π(S | T (P)).

5.2.4 Determining the Fluctuation Working Model

Now, can we slightly modify the initial estimator Q̄0
n to reduce bias for the addi-

tive causal effect? Let Q0
W,n be the empirical probability distribution of W1, . . . ,Wn.

We refer to the combined conditional probability distribution of Y and the marginal
probability distribution of W as Q0. Q0

n = (Q̄0
n,Q

0
W,n) denotes the initial estimator

of this Q0. We also remind the reader that the target parameter ψ0 only depends on
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P0 through Q̄0 and QW,0. Since the empirical distribution Q0
W,n is already a nonpara-

metric maximum likelihood estimator of the true marginal probability distribution
of W, for the sake of bias reduction for the target parameter, we can focus on only
updating Q̄0

n, as explained below.

We want to reduce the bias of our initial estimator, where the initial estimator
is a random variable that has bias and variance. We only need to update Q̄0

n
since the empirical distribution Q0

W,n is a nonparametric maximum likelihood
estimator (and can thus not generate bias for our target parameter).

Our parametric working model is denoted as {Q̄0
n(ε) : ε}, which is a small para-

metric statistical model, a one-dimensional submodel that goes through the initial
estimate Q̄0

n(A,W) at ε = 0. If we use the log-likelihood loss function

L(Q̄)(O) = − log Q̄(A,W)Y (1 − Q̄(A,W))1−Y ,

then the parametric working model for fluctuating the conditional probability distri-
bution of Y , given (A,W), needs to have the property

d
dε

log Q̄0
n(ε)(A,W)Y (1 − Q̄0

n(A,W))1−Y |ε=0 = D∗Y (Q0
n, gn)(W, A, Y), (5.1)

where D∗Y (Q0
n, gn) is the appropriate component of the efficient influence curve

D∗(Q0
n, gn) of the target parameter mapping at (Q0

n, gn). Formally, the appropriate
component D∗Y is the component of the efficient influence curve that equals a score
of a fluctuation of a conditional distribution of Y , given (A,W). These components
of the efficient influence curve that correspond with scores of fluctuations that only
vary certain parts of factors of the probability distribution can be computed with
Hilbert space projections. We provide the required background and tools in Ap-
pendix A and various subsequent chapters.

More on fluctuating the initial estimator. If the target parameter ψ0
depends on different variation-independent parts (QW,0, Q̄0) of the prob-
ability distribution P0, then one can decide to fluctuate the initial esti-
mators (Q0

W,n, Q̄n) with separate submodels and separate loss functions
L(QW ) = − log QW and L(Q̄), respectively. The submodels {Q0

W,n(ε) : ε},
{Q̄n(ε) : ε} and their corresponding loss functions L(QW ) and L(Q̄) need
to be chosen such that a linear combination of the components of the
derivative d

dε L(Q0
n(ε))

∣∣∣
ε=0 equals D∗(Q0

n, gn) for the sum-loss function
L(Q) = L(QW ) + L(Q̄). This corresponds with requiring that each of
the two loss functions generates a “score” so that the sum of these two
“scores” equals the efficient influence curve. If the initial estimator Q0

W,n
is a nonparametric maximum likelihood estimator, the TMLE using a
separate ε1 and ε2 for the two submodels will not update Q0

W,n.
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Following the protocol of TMLE, we also need to fluctuate the marginal distri-
bution of W. For that purpose we select as loss function of QW,0 the log-likelihood
loss function − log QW . Then we would select a parametric working model coding
fluctuations Q0

W,n(ε) of Q0
W,n so that

d
dε

log Q0
W,n(ε)

∣∣∣∣∣
ε=0
= D∗W (Q0

n, gn),

where D∗W is the component of the efficient influence curve that is a score of a
fluctuation of the marginal distribution of W.

Tangent spaces. Since QW and Q̄ represent parameters of different fac-
tors PW and PY |A,W in a factorization of P = PW PA|W PY |A,W , these compo-
nents D∗W (P) and D∗Y (P) can be defined as the projection of the efficient
influence curve D∗(P) onto the tangent space of PW at P and PY |A,W at P,
respectively. The tangent space TW of PW is given by all functions of W
with mean zero. The tangent space TY of PY |A,W is given by all functions
of W, A, Y for which the conditional mean, given A,W, equals zero. The
tangent space TA of PA|W is given by all functions of A,W, with condi-
tional mean zero, given W. These three tangent spaces are orthogonal,
as a general consequence of the factorization of P into the three factors.
The projection of a function S onto these three tangent spaces is given
by Π(S | TW ) = EP(S (O) | W), Π(S | TY )) = S (O) − EP(S (O) | A,W),
and Π(S | TA) = EP(S (O) | A,W) − EP(S | W), respectively. From
these projection formulas and setting S = D∗(P), the explicit forms of
D∗W (P) = Π(D∗(P) | TW ) and D∗Y (P) = Π(D∗(P) | TY ) can be cal-
culated as provided below, and for each choice of P. It also follows
that the projection of D∗(P) onto the tangent space of PA|W equals zero:
Π(D∗(P) | TA) = 0. The latter formally explains that the TMLE does not
require fluctuating the initial estimator of g0. It follows that the efficient
influence curve D∗(P) at P can be decomposed as:

D∗(P) = D∗Y (P) + D∗W (P).

Our loss function for Q is now L(Q) = L(Q̄) + L(QW ), and with this parametric
working model coding fluctuations Q0

n(ε) = (Q0
W,n(ε), Q̄0

n(ε)) of Q0
n, we have that the

derivative of ε → L(Q0
n(ε)) at ε = 0 equals the efficient influence curve at (Q0

n, gn).
If we use different ε for each component of Q0

n, then the two derivatives span the
efficient influence curve, since the efficient influence curve equals the sum of the
two scores D∗Y and D∗W . Either way, the derivative condition is satisfied:

〈
d
dε

L(Q0
n(ε))

∣∣∣∣∣
ε=0
〉 ⊃ D∗(Q0

n, gn), (5.2)
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where D∗(Q0
n, gn) = D∗Y (Q0

n, gn)+D∗W (Q0
n, gn). Here we used the notation 〈(h1, . . . , hk)〉

for the linear space consisting of all linear combinations of the functions h1, . . . , hk.
That is, the task of obtaining a loss function and parametric working model for fluc-
tuating Q0

n so that the derivative condition holds has been completed.

Due to this property (5.2) of the parametric working model, the TMLE has
the important feature that it solves the efficient influence curve equation
0 =

∑
i D∗(Q∗n, gn)(Oi) (also called the efficient score equation). Why is this

true? Because at the next iteration of TMLE, the parametric maximum likeli-
hood estimator εn = 0, and a parametric maximum likelihood estimator solves
its score equation, which exactly yields this efficient score equation. This is a
strong feature of the procedure as it implies that TMLE is double robust and
(locally) efficient under regularity conditions. In other words, TMLE is con-
sistent and asymptotically linear if either Qn or gn is a consistent estimator,
and if both estimators are asymptotically consistent, then TMLE is asymptot-
ically efficient.

However, if one uses a separate εW and ε for the two parametric working mod-
els through Q0

W,n and Q̄0
n, respectively, then the maximum likelihood estimator of

εW equals zero, showing that TMLE will only update Q̄0
n. Therefore, it was never

necessary to update the part of Q0
n that was already nonparametrically estimated.

If the initial estimator of QW,0 is a nonparametric maximum likelihood esti-
mator, then the TMLE does not update this part of the initial estimator Q0

n.

Of course, we have not been explicit yet about how to construct this submodel
Q̄0

n(ε) through Q̄0
n. For that purpose, we now note that D∗Y (Q0

n, gn) equals a function
H∗n(A,W) times the residual (Y − Q̄0

n(A,W)), where

H∗n(A,W) ≡
( I(A = 1)
gn(A = 1 | W)

−
I(A = 0)

gn(A = 0 | W)

)
.

Here I(A = 1) is an indicator variable that takes the value 1 when A = 1. One can see
that for A = 1 the second term disappears, and for A = 0 the first term disappears.

It can be shown (and it is a classical result for parametric logistic main term re-
gression in a parametric statistical model) that the score of a coefficient in front of a
covariate in a logistic linear regression in a parametric statistical model for a condi-
tional distribution of a binary Y equals the covariate times the residual. Therefore,
we can select the following parametric working model for fluctuating the initial es-
timate of the conditional probability distribution of Y , given (A,W), or, equivalently,
for the estimate of the probability of Y = 1, given (A,W):

Q̄0
n(ε)(Y = 1 | A,W) =

1

1 + exp
(
− log Q̄0

n

(1−Q̄0
n) (A,W) − εH∗n(A,W)

) .
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By this classical result, it follows that indeed the score of ε of this univariate logistic
regression submodel at ε = 0 equals D∗Y (Q0

n, gn). That is, we now have really fully
succeeded in finding a parametric submodel through the initial estimator Q0

n that
satisfies the required derivative condition. Since H∗n(A,W) now just plays the role
of a covariate in a logistic regression, using an offset, this explains why we call the
covariate H∗n(A,W) a clever covariate.

More on constructing the submodel. If one needs a submodel through
an initial estimator of a conditional distribution of a binary variable Y ,
given a set of parent variables Pa(Y), and it needs to have a particular
score D∗Y , then one can define this submodel as a univariate logistic re-
gression model, using the initial estimator as offset, with univariate clever
covariate defined as H∗(Pa(Y)) = E(D∗Y | Y = 1, Pa(Y)) − E(D∗Y | Y =
0, Pa(Y)). Application of this general result to the above setting yields
the clever covariate H∗(A,W) presented above.

If our goal was to target P0(Y1 = 1) or P0(Y0 = 1), then going through the same
protocol for the TMLE shows that one would use as clever covariate

H∗0,n(A,W) ≡
( I(A = 0)
gn(A = 0 | W)

)
or H∗1,n(A,W) ≡

( I(A = 1)
gn(A = 1 | W)

)
.

By targeting these two parameters simultaneously, using a two-dimensional clever
covariate with coefficients ε1, ε2, one automatically obtains a valid TMLE for pa-
rameters that are functions of these two marginal counterfactual probabilities, such
as a causal relative risk and causal odds ratio.

By computing the TMLE that targets a multidimensional target parameter,
one also obtains a valid TMLE for any (say) univariate summary measure of
the multidimensional target parameter. By valid we mean that this TMLE will
still satisfy the same asymptotic properties, such as efficiency and double ro-
bustness, as the TMLE that directly targets the particular summary measure.
The TMLE that targets the univariate summary measure of the multidimen-
sional parameter may have a better finite sample performance than the TMLE
that targets the whole multidimensional target parameter, in particular, if the
dimension of the multidimensional parameter is large.

5.2.5 Updating Q̄0
n

We first perform a logistic linear regression of Y on H∗n(A,W) where Q̄0
n(A,W) is

held fixed (i.e., used as an offset), and an additional intercept is suppressed in order
to estimate the coefficient in front of H∗n(A,W), denoted ε. The TMLE procedure
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is then able to incorporate information from gn, through H∗n(A,W), into an updated
regression. It does this by extracting εn, the maximum likelihood estimator of ε,
from the fit described above, and updating the estimate Q̄0

n according to the logistic
regression working model. This updated regression is then given by Q̄1

n:

logit Q̄1
n(A,W) = logit Q̄0

n(A,W) + εnH∗n(A,W).

One iterates this updating process until the next εn = 0 or has converged to
zero, but, in this example, convergence is achieved in one step. The TMLE of
Q0 is now Q∗n = (Q0

W,n, Q̄
1
n). Note that this step is equivalent to (ε1n, ε2n) =

arg minε1,ε2
∑

i L(Q0
n(ε1, ε2))(Oi), and setting Q1

n = Q0
n(ε1n, ε2n), where, as noted

above, ε1n = 0, so that only Q̄0
n is updated.

Given a parametric working model Q0
n(ε) with fluctuation parameter ε, and a

loss function L(Q) satisfying (5.2), the first-step TMLE is defined by deter-
mining the minimum ε0n of

∑n
i=1 L(Q0

n(ε))(Oi) and setting Q1
n = Q0

n(ε0n ). This
updating process is iterated until convergence of εkn = arg minε

∑n
i=1 L(Qk

n(ε))
to zero, and the final update Q∗n is referred to as the TMLE of Q0. In this case,
the next ε1n = 0, so that convergence is achieved in one step and Q∗n = Q1

n.

5.2.6 Estimating the Target Parameter

The estimate Q̄∗n = Q̄1
n obtained in the previous step is now plugged into our target

parameter mapping, together with the empirical distribution of W, resulting in the
targeted substitution estimator given by

ψn = Ψ (Q∗n) =
1
n

n∑
i=1

{Q̄1
n(1,Wi) − Q̄1

n(0,Wi)}.

This mapping is accomplished by evaluating Q̄1
n(1,Wi) and Q̄1

n(0,Wi) for each ob-
servation i and plugging these values into the above equation.

5.2.7 Calculating Standard Errors

The calculation of standard errors for TMLE can be based on the central limit theo-
rem, relying on δ-method conditions. (See Appendix A for an advanced introduction
to these topics.) Under such regularity conditions, the asymptotic behavior of the es-
timator, that is, its asymptotic normal limit distribution, is completely characterized
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by the so-called influence curve of the estimator in question. In our example, we
need to know the influence curve of the TMLE of its estimand.

Note that, in order to recognize that an estimator is a random variable, an esti-
mator should be represented as a mapping from the data into the parameter space,
where the data O1, . . . ,On can be represented by the empirical probability distri-
bution function Pn. Therefore, let Ψ̂ (Pn) be the TMLE described above. Since the
TMLE is a substitution estimator, we have Ψ̂ (Pn) = Ψ (P∗n) for a targeted estimator
P∗n of P0. An estimator Ψ̂ (Pn) of ψ0 is asymptotically linear with influence curve
IC(O) if it satisfies:

√
n(Ψ̂ (Pn) − ψ0) =

1
√

n

n∑
i=1

IC(Oi) + oP0 (1).

Here the remainder term, denoted by oP0 (1), is a random variable that converges to
zero in probability when the sample size converges to infinity. The influence curve
IC(O) is a random variable with mean zero under P0.

More on estimators and the influence curve. An estimator Ψ̂ (Pn) is a
function Ψ̂ of the empirical probability distribution function Pn. Specif-
ically, one can express the estimator as a function Ψ̂ of a large family of
empirical means 1/n

∑n
i=1 f (Oi) of functions f of O varying over a class

of functions F . We say the estimator is a function of Pn = (Pn f : f ∈ F ),
where we use the notation Pn f ≡ 1/n

∑n
i=1 f (Oi). By proving that the

estimator is a differentiable function Ψ̂ of Pn = (Pn f : f ∈ F ) at
P0 = (P0 f : f ∈ F ), and that a uniform central limit theorem applies
to Pn based on empirical process theory, it follows that the estimator
minus its estimand ψ0 = Ψ̂ (P0) behaves in first order as an empiri-
cal mean of IC(Oi): we write Ψ̂ (Pn) − ψ0 = (Pn − P0)IC + oP(1/

√
n).

This function IC(O) is called the influence curve of the estimator, and
it is uniquely determined by the derivative of Ψ̂ . Specifically, IC(O) =∑

f∈F
d

dP0 f Ψ̂ ((P0 f : f )( f (O) − P0 f ), where, formally, the
∑

becomes an
integral when F is not finite.

Asymptotic linearity is a desirable property as it indicates that the estimator be-
haves like an empirical mean, and, as a consequence, its bias converges to zero in
sample size at a rate faster than 1/

√
n, and, for n large enough, it is approximately

normally distributed. The influence curve of an estimator evaluated as a function
in O measures how robust the estimator is toward extreme values. The influence
curve IC(O) has mean zero under sampling from the true probability distribution
P0, and its (finite) variance is the asymptotic variance of the standardized estimator√

n(Ψ̂ (Pn) − ψ0).

In other words, the variance of Ψ̂ (Pn) is well approximated by the variance of
the influence curve, divided by sample size n. If ψ0 is multivariate, then the
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covariance matrix of Ψ̂ (Pn) is well approximated by the covariance matrix of
the multivariate influence curve divided by sample size n. More importantly,
the probability distribution of Ψ̂ (Pn) is well approximated by a normal distri-
bution with mean ψ0 and the covariance matrix of the influence curve, divided
by sample size.

An estimator is asymptotically efficient if its influence curve is equal to the ef-
ficient influence curve, IC(O) = D∗(O). The influence curve of the TMLE indeed
equals D∗ if Q∗n is a consistent estimator of Q0, and gn is a consistent estimator of g0.
A complete technical understanding of influence curve derivation is not necessary
to implement the TMLE procedure. However, we provide Appendix A for a detailed
methodology for deriving the influence curve of an estimator.

More on asymptotic linearity and efficiency. The TMLE is a consis-
tent estimator of ψ0 if either Q̄n is consistent for Q̄0 or gn is consistent
for g0. The TMLE is asymptotically linear under additional conditions.
For a detailed theorem establishing asymptotic linearity and efficiency
of the TMLE, we refer the reader to Chap. 27. In particular, if for some
δ > 0, δ < g0(1 | W) < 1 − δ, and the product of the L2-norm of
Q̄n − Q̄0 and the L2-norm of gn − g0 converges to zero at faster rate
than 1/

√
n, then the TMLE is asymptotically efficient. If gn is a consis-

tent estimator of g0, then the influence curve of the TMLE Ψ̂ (Pn) equals
IC = D∗(Q∗, g0) − Π(D∗(Q∗, g0) | Tg), the efficient influence curve at
the possibly misspecified limit of Q∗n minus its projection on the tangent
space of the model for the treatment mechanism g0. The projection term
makes D∗(Q∗, g0) a conservative working influence curve, and the pro-
jection term equals zero if either Q∗ = Q0 or g0 was known and gn = g0.

From these formal asymptotic linearity results for the TMLE it follows that if gn

is a consistent estimator of g0, then the TMLE Ψ̂ (Pn) is asymptotically linear with
an influence curve that can be conservatively approximated by D∗(Q∗, g0), where
Q∗ denotes the possibly misspecified estimand of Q∗n. If g0 was known, as in a
randomized controlled trial, and gn was not estimated, then the influence curve of the
TMLE equals D∗(Q∗, g0). If, on the other hand, gn was estimated under a correctly
specified model for g0, then the influence curve of the TMLE has a smaller variance
than the variance of D∗(Q∗, g0), except if Q∗ = Q0, in which case the influence curve
of the TMLE equals the efficient influence curve D∗(Q0, g0). As a consequence, we
can use as a working estimated influence curve for the TMLE

ICn(O) =
(

I(A = 1)
gn(1 | W)

−
I(A = 0)
gn(0 | W)

)
(Y − Q̄1

n(A,W)) + Q̄1
n(1,W) − Q̄1

n(0,W) − ψn.

Even if Q̄1
n is inconsistent, but gn is consistent, this influence curve can be used

to obtain an asymptotically conservative estimator of the variance of the TMLE
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Ψ̂ (Pn). This is very convenient since the TMLE requires calculation of D∗(Q∗n, gn),
and apparently we can use the latter as influence curve to estimate the normal limit
distribution of the TMLE.

If one assumes that gn is a consistent maximum-likelihood-based estimator
of g0, then one can (asymptotically) conservatively estimate the variance of
the TMLE with the sample variance of the estimated efficient influence curve
D∗(Q∗n, gn).

An estimate of the asymptotic variance of the standardized TMLE,
√

n(Ψ̂ (Pn)−ψ0),
viewed as a random variable, using the estimate of the influence curve ICn(O) is
thereby given by

σ2
n =

1
n

n∑
i=1

IC2
n(oi).

5.3 Foundation and Philosophy of TMLE

TMLE in semiparametric statistical models for P0 is the extension of maximum like-
lihood estimation in parametric statistical models. Three key ingredients are needed
for this extension. Firstly, one needs to define the parameter of interest semipara-
metrically as a function of the data-generating distribution varying over the (large)
semiparametric statistical model. Many practitioners are used to thinking of their pa-
rameter in terms of a regression coefficient, but that luxury is not available in semi-
or nonparametric statistical models. Instead, one has to carefully think of what fea-
ture of the distribution of the data one wishes to target.

Secondly, one needs to estimate the true distribution P0, or at least its relevant
factor or portion as needed to evaluate the target parameter, and this estimate should
respect the actual semiparametric statistical model. As a consequence, nonpara-
metric maximum likelihood estimation is often ill defined or results in a complete
overfit, and thereby results in estimators of the target parameter that are too vari-
able. We discussed this issue in Chap. 3. The theoretical results obtained for the
cross-validation selector (discrete super learner) inspired the general super learn-
ing methodology for estimation of probability distributions of the data, or factors
of other high-dimensional parameters of the probability distributions of the data.
In the sequel, a reference to a true probability distribution of the data is meant to
refer to this relevant part of the true probability distribution of the data. This super
learning methodology takes as input a collection of candidate estimators of the dis-
tribution of the data and then uses cross-validation to determine the best weighted
combination of these estimators. It is assumed or arranged that the loss function is
uniformly bounded so that oracle results for the cross-validation selector apply. The
super learning methodology results now in an estimator of the distribution of the
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data that will be used as an initial estimator in the TMLE procedure. The oracle re-
sults for this super learner teach us that the initial estimator is optimized with respect
to a global loss function such as the log-likelihood loss function and is thereby not
targeted toward the target parameter, Ψ (P0). That is, it will be too biased for Ψ (P0)
due to a bias–variance tradeoff with respect to the more ambitious full P0 (or rele-
vant portion thereof) instead of having used a bias–variance tradeoff with respect to
Ψ (P0). The targeted maximum likelihood step is tailored to remove bias due to the
nontargeting of the initial estimator.

The targeted maximum likelihood step involves now updating this initial (super-
learning-based) estimator P0

n of P0 to tailor its fit to estimation of the target ψ0, the
value of the parameter Ψ (P0). This is carried out by determining a cleverly chosen
parametric working model modeling fluctuations P0

n(ε) of the initial estimator P0
n

with a (say) univariate fluctuation parameter ε. The value ε = 0 corresponds with
no fluctuation so that P0

n(0) = P0
n. One now estimates ε with maximum likelihood

estimation, treating the initial estimator as a fixed offset, and updates the initial es-
timator accordingly. If needed, this updating step is iterated to convergence, and the
final update P∗n is called the TMLE of P0, while the resulting substitution estimator
Ψ̂ (P∗n) of Ψ (P0) is the TMLE of ψ0. This targeted maximum likelihood step thus
uses a parametric maximum likelihood estimator, accordingly to a cleverly chosen
parametric working model that includes the initial estimator, to obtain a bias reduc-
tion for the target Ψ (P0).

This is not just any parametric working model. That is, we wish to select a para-
metric working model such that the parametric maximum likelihood estimator is
maximally effective in removing bias for the target parameter, at minimal increase
in variance. So if εn is the parametric maximum likelihood estimator of ε, then we
want the mean squared error of Ψ (P0

n(εn)) − ψ0 to be as small as possible. We want
this parametric working model to really listen to the information in the data that is
relevant for the target parameter. In fact, we would like the parametric maximum
likelihood estimator to be as responsive to the information in the data that is rele-
vant for the target parameter as an estimator that is asymptotically efficient in the
semiparametric model.

To get insight into what kind of choice of parametric working model may be as
adaptive to such target-parameter-specific features in the data as a semiparametric
efficient estimator, we make the following observations. Suppose one is interested
in determining the parametric working model coding fluctuations P0(ε) of P0 so that
the maximum likelihood estimator of ψ0 = Ψ (P0(ε = 0)) according to this paramet-
ric working model is asymptotically equivalent to an efficient estimator in the large
semiparametric model. Note that this parametric working model is not told that the
true value of ε equals zero. It happens to be the case that from an asymptotic effi-
ciency perspective this can be achieved as follows. Among all possible parametric
working models that code fluctuations P0(ε) of the true P0 we chose the one for
which the Cramer–Rao lower bound for the target parameter Ψ (P0(ε)) at ε = 0 is
equivalent to the semiparametric information bound for the target parameter at P0.
The Cramer–Rao lower bound for a parametric working model P0(ε) is given by
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d
dε Ψ (P0(ε))

∣∣∣
ε=0

}2

I(0)
,

where I(0) denotes the variance of the score of the parametric working model at
ε = 0. In parametric model theory I(0) is called the information at parameter value 0.
The semiparametric information bound for the target parameter at P0 is defined as
the supremum over all these possible Cramer–Rao lower bounds for the paramet-
ric working models. That is, the semiparametric information bound is defined as
the Cramer–Rao lower bound for the hardest parametric working model. Thus, the
parametric working model for which the parametric maximum likelihood estimator
is as responsive to the data with respect to the target parameter as a semiparamet-
ric efficient estimator is actually given by this hardest parametric working model.
Indeed, the TMLE selects this hardest parametric working model, but through P0

n.
Note also that this hardest working parametric model can also be interpreted

as the one that maximizes the change of the target parameter relative to a change
P0(ε) − P0 under small amounts of fluctuations. Thus this hardest working para-
metric model through an initial estimator P0

n will maximize the change of the target
parameter relative to the initial value Ψ (P0

n) for small values of ε.
Beyond the practical appeal of this TMLE update that uses the parametric likeli-

hood to fit the target parameter of interest, an important feature of the TMLE is that
it solves the efficient influence curve equation, also called the efficient score equa-
tion, of the target parameter. We refer the reader to Sect. 5.2 and Appendix A for
relevant material on the efficient influence curve. For now, it suffices to know that an
estimator is semiparametric efficient if the estimator minus the true target parameter
behaves as an empirical mean of D∗(P0)(Oi), i = 1, . . . , n, showing the incredible
importance of this transformation D∗(P0) of O, which somehow captures all the rel-
evant information of O for the sake of learning the statistical parameter Ψ (P0). If
D∗(P)(O) is the efficient influence curve at P, a possible probability distribution for
O in the statistical model, and P∗n is the TMLE of P0, then, 0 =

∑n
i=1 D∗(P∗n)(Oi).

Just as a parametric maximum likelihood estimator solves a score equation by
virtue of its maximizing the likelihood over the unknown parameters, a TMLE
solves the target-parameter-specific score equation for the target parameter by virtue
of maximizing the likelihood in a targeted direction. This can then be used to estab-
lish that the TMLE is asymptotically efficient if the initial estimator is consistent and
remarkably robust in the sense that for many data structures and semiparametric sta-
tistical models, the TMLE of ψ0 remains consistent even if the initial estimator is in-
consistent. By using submodels that have a multivariate fluctuation parameter ε, the
TMLE will solve the score equation implied by each component of ε. In this man-
ner, one can obtain TMLEs that solve not only the efficient influence curve/efficient
score equation for the target parameter, but also an equation that characterizes other
interesting properties, such as being an imputation estimator (Gruber and van der
Laan 2010a).

In particular, in semiparametric models used to define causal effect parameters,
the TMLE is a double robust estimator. In such semiparametric models the proba-
bility distribution function P0 can be factorized as P0(O) = Q0(O)g0(O), where g0
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is the treatment mechanism and Q0 is the relevant factor that defines the g-formula
for the counterfactual distributions. The TMLE Ψ (Q∗n) of ψ0 = Ψ (Q0) is consistent
if either Q∗n or gn is consistent. In our example, gn is the estimator of the treatment
mechanism g0(A | W) = P0(A | W), and Q∗n is the TMLE of Q0.

5.4 Summary

TMLE of a parameter Ψ (Q0) distinguishes from nonparametric or regularized max-
imum likelihood estimation by fully utilizing the power of cross-validation (super
learning) to fine-tune the bias–variance tradeoff with respect to the part Q0 of the
data-generating distribution, thereby increasing adaptivity to the true Q0, and by tar-
geting the fit to remove bias with respect to ψ0. The loss-based super learner of Q0
already outperforms with respect to bias and variance a regularized maximum like-
lihood estimator for the semiparametric statistical model with respect to estimation
of Q0 itself by its asymptotic equivalence to the oracle selector: one could include
the regularized maximum likelihood estimator in the collection of algorithms for
the super learner. Just due to using the loss-based super learner it already achieves
higher rates of convergence for Q0 itself, thereby improving both in bias and vari-
ance for Q0 as well as Ψ (Q0). In addition, due to the targeting step, which again
utilizes super learning for estimation of the required g0 in the fluctuation function, it
is less biased for ψ0 than the initial loss-function-based super learner estimator, and,
as a bonus, the statistical inference based on the central limit theorem is also heav-
ily improved relative to just using a nontargeted regularized maximum likelihood
estimator.

Overall it comes down to the following: the TMLE is a semiparametric effi-
cient substitution estimator. This means it fully utilizes all the information in
the data (super learning and asymptotic efficiency), in addition to fully using
knowledge about global constraints implied by the statistical semiparametric
statistical modelM and the target parameter mapping (by being a substitution
estimator), thereby making it robust under sparsity with respect to the target
parameter. It fully incorporates the power of super learning for the benefit of
getting closer to the truth in finite samples.
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